| 1. Use Case
Name | Drug Signature Program
Algorithms | Complaint lead value probability | Privileged Material Identification | Savan Group Intelligent Records
Consolidation Tool | Research Abstract Screening for
CrimeSolutions | PLX | |---|--|--|---|--|---|---| | 2. Agency | DOJ | DOJ | DOJ | Department of Justice | DOJ | DOJ | | 3. Component | DEA DEA's Special Testing and | FBI The Threat Intake Processing System (TIPS) uses artificial intelligence (AI) to calculate scores | TAX | JMD ORMP uses an Al and Natural Language Processing (NLP) tool to assess the similarity of records schedules across all Department | OJP | ATF | | 5. Summary of
Use Case | Research Laboratory utilizes Al/ML techniques and has developed a robust statistical methodology including multivariate statistical analysis tools to automatically classify the geographical region of origin of samples selected for DEA's Heroin and Cocaine signature programs. The system provides for detection of anomalies and low confidence results. | for calls and electronic tips based on call synopses and electronic tip text. The score predicts the probability that a tip has lead value (e.g., referrals to partner agencies, drafting of a Guardian, or if it contains a Threat to Life [TTL]). The scores are also used to screen social media posts directed to the FBI. Due to the significant volume of social media posts, only posts that score above a designated threshold are forwarded to the system for review. | The application scans documents and looks for attorney/client privileged information. It does this based on keyword input by the system operator | records schedules. The tool provides clusters of similar items to significantly reduce the time that the Records Manager spends manually reviewing schedules for possible consolidation. An Al powered dashboard provides recommendations for schedule consolidation and review, while also providing the Records Manager with the ability to review by cluster or by individual record. The solution's technical approach has applicability with other domains that require text similarity analysis. | Use natural language processing, machine learning, and artificial intelligence processes developed by a contractor to aid in screening abstracts of newly identified evaluation research for consideration in future program ratings. | PLX allows ATF to view and analyze all communication records anxfully collected during an investigation in a single platform. PLX allows ATF users to deconflict data across the agency and look at case commonalities. | | 7. Stage of
System
Development
Life Cycle | Operation and Maintenance | | 8. Date Initiated | 10/1/2013 | | 1/1/2021 | 6/1/2020 | 1/1/2021 | | | 9. Date when
Development
and/or
Acquisition
began (if
applicable) | 10/1/2013 | | 1/1/2019 | 8/1/2020 | 5/1/2021 | | | 10. Date
Implemented (if
applicable) | 10/1/2014 | 9/5/2019 | 1/1/2021 | 9/16/2020 | 9/1/2022 | | | 11. Contact
Name | Monique Bourque | | 12. Contact
Email | monique.bourque@usdoj.gov | monique.bourque@usdoj.gov | monique.bourque@usdoj.gov | monique.bourque@usdoj.gov | monique.bourque@usdoj.gov | monique.bourque@usdoj.gov | | 14. Developer
Information
15. Consistent | In-house | Contracted: Contract personnel
played role in design &
development | Commercial-off-the-shelf | Contracted | Contracted | Commercial-off-the-shelf | | with EO 13960? | Yes | Yes | Yes | Yes | Yes | Yes | | Explanation for inconsistencies with EO 13960 | N/A | N/A | N/A | N/A | N/A | N/A | | 17. What
specific AI
techniques were
used? | Machine learning using authentic
drug samples/data and validation
rules. | Natural Language Processing
(NLP) models | Text IQ uses techniques to sufficiently be considered AI. Text IQ uses unsupervised machine learning algorithms to analyze unstructured data. The AI extracts a social linguistic hypergraph from a data set which structures otherwise unstructured text. The machine predicts privilege documents by utilizing deep learning architectures to establish context and understanding relationships using social network features in that data set. | Topic Modeling Word Embedding Optimal Transport Clustering | Support Vector Classification | Image recognition, entity
resolution, entity disambiguation,
data deconfliction, pattern
analysis | | 18. (Optional)
Where did/does
the training data
originate? | Agency Generated | Historical data generated by reviewers of complaints in the Threat Intake Processing System | Vendor | The solution makes use of glove-
wiki-gigaword-50 pre-trained
model, which is publicly available. | The screening results from prior manual (non-AI) literature searches for research abstracts. | Vendor, User feedback | | 20. (Optional) Does the agency have access to the code associated with the Al use case? | Yes, only Special Testing Lab at DEA | Yes | No | No | Yes | No | | 21. (Optional) If
the source code
is publicly
available,
provide link. | N/A | N/A | N/A | The LDA portion of the code and glove-wiki-gigaword-50 pre-trained model is publicly available. LDA: https://scikitlearn.org/0.16/modules/generate d/sklearn.da.LDA.htm Pre-trained Model: https://radimrehurek.com/gensim/auto_examples/howtos/run_downloader_api.html | N/A | N/A | | 22. (Optional) is
the agency able
to conduct
ongoing testing
on the code? | Yes | Yes | No | No | Yes | | | 23. (Optional) Is
the agency able
to monitor
and/or audit
performance? | Yes | Yes | Yes | No | Yes | | | | | | | | | Detection and recognition of | |---|---|---|---------------------------|---|--|---| | 1. Use Case
Name | Vound Intella | X-Ways Forensics | ShotSpotter (City) | CopLink X | Voice Transcription to Text | objects and content within multimedia data | | 2. Agency 3. Component | DOJ
ATF | DOJ
ATF | DOJ
ATF | DOJ
ATF | DOJ
OIG | DOJ
FBI | | 5. Summary of
Use Case | Vound Intella: Software used to | X-Ways Forensics: Software used to ingest, process, parse and present data lawfully acquired from suspect computer and other storage type devices, including image analysis and object recognition. | | Started as a joint project of the Tucson Police Department (Arizona) and the University of Arizona's Artificial Intelligence Laboratory, CopLink X links databases across jurisdictions and searches these databases for associations between people, places, combining natural language search with structured field level and federated search. Coplink contains data from around 2,000 local and state law enforcement agencies, most of which are local police departments and Sheriff's offices. It contains around 1 billion searchable document types, including arrest records, prison visitation logs, field interviews, traffic citations, license plate reader hits, sex offender registry records, mugshots, and tattoo images. | Build a system which inputs a
voice reordings and output's a text
file of the recording. | Computer vision algorithms trained using AI techniques are used to classify and identify content in lawfully acquired images and videos to enable a user to quickly find "content" of interest in multimedia data. All results are reviewed by a human and no action is taken automatically based on the sole result of the algorithms. | | 7. Stage of
System
Development
Life Cycle | Operation and Maintenance | Operation and Maintenance | Operation and Maintenance | Operation and Maintenance | Development and Acquisition | Implementation | | 8. Date Initiated | | | | | 3/1/2023 | | | 9. Date when Development and/or Acquisition began (if applicable) 10. Date | | | | | 4/1/2023 | 6/1/2014 | | Implemented (if applicable) | | | | | | | | 11. Contact
Name | Monique Bourque | | 12. Contact
Email | monique.bourque@usdoj.gov | monique.bourque@usdoj.gov | monique.bourque@usdoj.gov | monique.bourque@usdoj.gov | monique.bourque@usdoj.gov | monique.bourque@usdoj.gov | | 14. Developer
Information | Commercial-off-the-shelf | Commercial-off-the-shelf | Commercial-off-the-shelf | Commercial-off-the-shelf | Contracted | Contracted: Contract personnel
played role in design &
development | | 15. Consistent
with EO 13960? | Yes | Yes | Yes | Yes | Yes | Yes | | 16. (Optional)
Explanation for
inconsistencies
with EO 13960 | N/A | N/A | N/A | N/A | N/A | N/A | | 17. What
specific AI
techniques were
used? | Image categorization, object
detection | Image analysis, object recognition | Audio pattern analysis | Natural language processing, data
deconfliction, entity
disambiguation | Cognitive Services | Deep Learning and Natural
Language Processing | | 18. (Optional)
Where did/does
the training data
originate? | Vendor, User feedback | Vendor, User feedback | Vendor | Vendor | | The majority of algorithms used
are open source and use open
source datasets for training.
Internal training is done through
contracts | | 20. (Optional) Does the agency have access to the code associated with the Al use case? | No | No | No | No | No | Yes | | 21. (Optional) If
the source code
is publicly
available,
provide link. | N/A | N/A | N/A | N/A | N/A | https://openmpf.github.io/ | | 22. (Optional) is
the agency able
to conduct
ongoing testing
on the code? | | | | | Yes | Yes | | 23. (Optional) Is
the agency able
to monitor
and/or audit
performance? | | | | | | Yes | | | | T | T | |---|--|---|--| | 1. Use Case
Name | Lilt | Amazon Rekognition - AWS -
Project Tyr | Machine Translation Service - Hola
iBot | | 2. Agency 3. Component | DOJ
FBI | DOJ
FBI | DOJ
FBI | | 5. Summary of
Use Case | DI/Language Services Section funds the commercial software "Lilt" which is a computer-assisted translation (CAT) software for use by FBI linguists for translating documents. Lilt offers adaptive and interactive neural machine translation (NMT) output through a browser-based UI to increase translators' productivity. | Amazon Rekognition offers pre-
trained and customizable
computer vision (CV) capabilities
to extract information and insights
from lawfully acquired images and
videos. Currently in initiation
phase to customize to review and
identify items containing nudity,
weapons, explosives, and other
identifying information. | One time usage on the ANOM dataset for AWS Translate. All translated items were marked as translated. Linguists then have been going through the data to confirm accuracy. | | 7. Stage of
System | | | | | Development | Implementation | Initiation | Operation and Maintenance | | Life Cycle | | | | | 8. Date Initiated | | | | | 9. Date when Development and/or Acquisition began (if applicable) | | | | | 10. Date
Implemented (if
applicable) | | | | | 11. Contact
Name | Monique Bourque | Monique Bourque | Monique Bourque | | 12. Contact | monique.bourque@usdoj.gov | monique.bourque@usdoj.gov | monique.bourque@usdoj.gov | | Email | Commercial-off-the-shelf: system | Commercial-off-the-shelf: system | Commercial-off-the-shelf: system | | 14. Developer
Information | was purchased pre-built from a | was purchased pre-built from a | was purchased pre-built from a | | 15. Consistent | third-party
Yes | third-party
Yes | third-party
Yes | | with EO 13960?
16. (Optional) | 165 | ies | ies | | Explanation for inconsistencies with EO 13960 | N/A | N/A | N/A | | 17. What
specific Al
techniques were
used? | Transformer-based, neural
machine translation | To be determined, in collaboration with AWS. | To be determined, in collaboration with AWS. | | 18. (Optional) Where did/does the training data originate? | Company-proprietary; open web scrapes | To be determined, in collaboration with AWS. | To be determined, in collaboration with AWS. | | 20. (Optional) Does the agency have access to the code associated with the Al use case? | No | No | No | | 21. (Optional) If
the source code
is publicly
available,
provide link. | N/A | To be determined, in collaboration with AWS. | To be determined, in collaboration with AWS. | | 22. (Optional) Is
the agency able
to conduct
ongoing testing
on the code? | No | No | Yes | | 23. (Optional) is
the agency able
to monitor
and/or audit
performance? | Yes | Yes | Yes |